Factorization and Resummation for Exclusive Jet Cross Sections

Frank Tackmann

Massachusetts Institute of Technology

LoopFest IX Stony Brook, June 21-23, 2010

Work with Iain Stewart, Wouter Waalewijn, Carola Berger, Claudio Marcantonini [arXiv:0910.0467, arXiv:1002.2213

arXiv:1004.2489. arXiv:1005.4060. arXiv:1006:xxxxl

Outline

- Jet Vetos and ISR
- Beam Thrust and Beam Functions
- NNLL Results for Drell-Yan and Higgs
- Outlook

Outline

- Jet Vetos and ISR
- Beam Thrust and Beam Functions
- NNLL Results for Drell-Yan and Higgs
- 4 Outlook

00000

Higgs and New physics hide at short distances in hard interaction

Factorization: "Cross section can be computed by combining separate pieces"

 $d\sigma = \mathsf{PDFs} \otimes \mathsf{ISR} \otimes \mathsf{hard} \; \mathsf{interaction} \otimes \mathsf{ISR} \otimes \mathsf{interaction} \otimes$

FSR

⊗ soft radiation

initial-state parton shower matrix-element generator

final-state hadronization parton shower underlying event

Outlook

Why Veto Jets?

Hard interaction identified by looking for signal with characteristic number of jets plus leptons/photons

 \Rightarrow Want to measure *exclusive* jet cross section $pp \rightarrow XL + N$ jets

Background discrimination often requires a veto on additional jets

- SM processes with same signal signature and additional jets
 - $lackbox{ iny } H o WW$ dominated by tar t o WWbar b by $\sim 1:40$

Hard interaction identified by looking for signal with characteristic number of jets plus leptons/photons

 \Rightarrow Want to measure *exclusive* jet cross section $pp \rightarrow XL + N$ jets

Background discrimination often requires a veto on additional jets

- SM processes with same signal signature and additional jets
 - $lackbox{ } H
 ightarrow WW$ dominated by tar t
 ightarrow WWbar b by $\sim 1:40$
- Jets can fake signal leptons or photons (e.g. hard $\pi^0 \to \gamma \gamma$)
 - $H \to \gamma \gamma$ has huge backgrounds from $pp \to jj$, $pp \to j\gamma$

Why Veto Jets?

Hard interaction identified by looking for signal with characteristic number of jets plus leptons/photons

 \Rightarrow Want to measure *exclusive* jet cross section $pp \rightarrow XL + N$ jets

Background discrimination often requires a veto on additional jets

- SM processes with same signal signature and additional jets
 - $lackbox{ iny } H o WW$ dominated by tar t o WWbar b by $\sim 1:40$
- Jets can fake signal leptons or photons (e.g. hard $\pi^0 \to \gamma \gamma$)
 - $lackbox{ iny } H o\gamma\gamma$ has huge backgrounds from $pp o jj,\,pp o j\gamma$
- Reconstructing new-physics masses and decay chains
 - Additional jets cause large combinatorial backgrounds

Example: $qq \rightarrow H \rightarrow WW$

Want gg o H + 0 jets to eliminate gg o tar t o WWbar b

• Run jet algorithm and veto all events having jets with $p_T^{
m jet}>p_T^{
m cut}\simeq 20~{
m GeV}$ and $|\eta^{
m jet}|<\eta^{
m cut}\simeq 2.5$

Tevatron excludes $m_H \simeq 165\,{
m GeV}$ at 95% CL

- Dominant sensitivity from 0-jet sample
- ⇒ Setting limits requires reliable theory predictions and uncertainties (Theory uncertainties have been questioned [Baglio, Djouadi])

Inclusive vs. Exclusive Jet Cross Section

Inclusive jet cross section

Jet Vetos and ISR

• Can be obtained from fixed-order partonic calculation

$$\sigma^{ ext{hadronic}} = \sum_{i,j} \sigma^{ ext{partonic}}_{ij} \otimes f_i \otimes f_j$$

• Tree-level matrix element for $ij \rightarrow N$ partons corresponds to LO inclusive ("total") cross section to produce N or more jets

Inclusive vs. Exclusive Jet Cross Section

Inclusive jet cross section

• Can be obtained from fixed-order partonic calculation

$$\sigma^{ ext{hadronic}} = \sum_{i,j} \sigma^{ ext{partonic}}_{ij} \otimes f_i \otimes f_j$$

• Tree-level matrix element for $ij \rightarrow N$ partons corresponds to LO inclusive ("total") cross section to produce N or more jets

Exclusive jet production *very different* from inclusive jet production

- Jet veto imposes strong phase space restriction, causing potentially large double logarithms $\alpha_s^n \ln^{m \leq 2n} (p_T^{\text{cut}}/Q)$
- ⇒ Fixed-order perturbation theory may not be enough (One reason for attaching parton shower to a fixed-order calculation)
- ⇒ Theory uncertainties?
- Relevant factorization theorem?

Hadronic Initial-State Radiation

Hadronic ISR has important effects

- Modifies parton luminosity available for hard interaction
- Causes additional jets unrelated to hard interaction (incoming gluons radiate a lot) f
- ⇒ Jet veto affects cross section by restricting ISR

PDF DGLAP evolution is insufficient to sum double logarithms from ISR

Proper scale to evaluate PDFs?

Outline

- Jet Vetos and ISF
- Beam Thrust and Beam Functions
- NNLL Results for Drell-Yan and Higgs
- Outlook

Implementing Jet Vetos in Theory Predictions

Jet veto via jet algorithm yields complicated phase-space cuts

- Currently rely on parton shower Monte Carlo to sum leading logs
 - ▶ ISR modelled by initial-state shower (less tested than final-state one)
 - ► MC@NLO, POWHEG: fixed NLO + parton-shower LL summation [Frixione, Webber; Nason et al.]
- ullet FEHiP, HNNLO: NNLO parton-level Monte Carlos for gg o H o WW [Anastasiou et al.: Grazzini]

Implementing Jet Vetos in Theory Predictions

Jet veto via jet algorithm yields complicated phase-space cuts

- Currently rely on parton shower Monte Carlo to sum leading logs
 - ► ISR modelled by initial-state shower (less tested than final-state one)
 - ► MC@NLO, POWHEG: fixed NLO + parton-shower LL summation [Frixione, Webber; Nason et al.]
- FEHiP, HNNLO: NNLO parton-level Monte Carlos for $qq \to H \to WW$ [Anastasiou et al.: Grazzini]

Want to implement jet veto by cutting on simple kinematic variable

- ⇒ Analytic control of phase-space restriction from jet veto allows for
- Systematic summation of phase-space logs (beyond parton shower and leading log)
- Theory treatment of soft effects (beyond hadronization and underlying event models)
- Better handle on theory uncertainties

Isolated Drell-Yan: $pp o X\ell^+\ell^- + 0$ jets

Hard interaction $q\bar{q} \to \gamma/Z \to \ell^+\ell^-$

Variables

$$Q^2 = (p_{\ell^+} + p_{\ell^-})^2$$

Y =dilepton rapidity

ullet Hard scale $\mu_H \simeq Q = \sqrt{Q^2}$

Outlook

Isolated Drell-Yan: $pp o X\ell^+\ell^- + 0$ jets

Hard interaction $q\bar{q} \to \gamma/Z \to \ell^+\ell^-$

Variables

$$Q^2 = (p_{\ell^+} + p_{\ell^-})^2$$

Y =dilepton rapidity

• Hard scale $\mu_H \simeq Q = \sqrt{Q^2}$

Impose veto on central jets: $pp \rightarrow \gamma/Z + 0$ jets

- Hadronic final state X dominated by ISR
- Energetic radiation only in forward direction (at measurable rapidities)
- Soft radiation everywhere (underlying event)
- ⇒ Simplest process to study jet veto and ISR

Type of radiation Momentum scaling Contribution to τ_B Soft $E_k, p_k^z \ll Q$ $\ll 1$

Type of radiation	Momentum scaling	Contribution to $ au_B$
Soft	$E_k, p_k^z \ll Q$	≪ 1
Forward energetic	$E_k - p_k^z \ll Q$	$\ll 1$

Type of radiation	Momentum scaling	Contribution to $ au_B$
Soft	$E_k, p_k^z \ll Q$	≪ 1
Forward energetic	$E_k - p_k^z \ll Q$	$\ll 1$
Central energetic	$E_k \pm p_x^z \sim E_k \sim Q$	~ 1

Type of radiation	Momentum scaling	Contribution to $ au_B$
Soft	$E_k, p_k^z \ll Q$	≪ 1
Forward energetic	$E_k - p_k^z \ll Q$	$\ll 1$
Central energetic	$E_h + p^z \sim E_h \sim Q$	~ 1

Require $au_B \ll 1$

- Allows soft & forward energetic but no central energetic radiation
- ⇒ Provides central jet veto via simple kinematic variable

Beam Thrust Factorization Theorem

Factorization theorem for $au_B \ll 1$

$$(x_{a,b} = (Q/E_{\rm cm})e^{\pm Y})$$

$$egin{aligned} rac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d} au_B} &= rac{8\pilpha_{\mathrm{em}}^2}{9E_{\mathrm{cm}}^2Q} \sum_{ij=\{qar{q},ar{q}q\}} H_{ij}(Q^2,\mu) \ & imes \int\!\mathrm{d}t_a B_i(t_a,x_a,\mu) \int\!\mathrm{d}t_b B_j(t_b,x_b,\mu)\, S_B^{qar{q}}igg(au_B - rac{t_a + t_b}{Q^2},\muigg) \ & imes igl[1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q, au_B)igr] \end{aligned}$$

Function		describes	at scale
Hard	$H_{ij}(Q^2,\mu)$	hard virtual radiation	$\mu_H \simeq -\mathrm{i} Q$
Beam	$B_i(t,x,\mu)$	virtual & real energetic ISR	$\mu_B \simeq \sqrt{ au_B} Q$
Soft	$S_B(au_B^{ m soft},\mu)$	virtual & real soft radiation	$\mu_S \simeq au_B Q$

- Large logs from central jet veto are $\alpha_s^n(\ln^m \tau_B)/\tau_B$ or $\alpha_s^n \ln^m \tau_B^{\text{cut}}$
 - ► Summed by RG evolution of $H_{ij}(\mu)$, $B_i(\mu)$, $B_j(\mu)$, $S_B(\mu)$

Physical Picture of Initial State

Measurement probes PDFs at some intermediate scale μ_B

 $\mu < \mu_B$: On-shell partons "inside" incoming proton

ISR captured by PDF evolution, redistributes momentum fraction x

Physical Picture of Initial State

Measurement probes PDFs at some intermediate scale μ_B

 $\mu < \mu_B$: On-shell partons "inside" incoming proton

ullet ISR captured by PDF evolution, redistributes momentum fraction $oldsymbol{x}$

 $\mu>\mu_B$: Off-shell parton with virtuality -t<0 part of incoming jet

- Colliding parton emits collinear and soft ISR "outside" proton
- ISR goes into final state and is measured by jet veto

Beam Function Calculation

 $\mu=\mu_B$: Can calculate $B_i(\mu_B)$ perturbatively in terms of $f_j(\mu_B)$

$$B_i(t,x,\mu_B) = \sum_i \int_x^1 rac{\mathrm{d}\xi}{\xi} \, \mathcal{I}_{ij} \Big(t,rac{x}{\xi},\mu_B\Big) f_j(\xi,\mu_B) = \delta(t) f_i(x,\mu_B) + \cdots$$

• \mathcal{I}_{ij} computed to NLO for all ij

Beam Function Calculation

 $\mu=\mu_B$: Can calculate $B_i(\mu_B)$ perturbatively in terms of $f_j(\mu_B)$

Beam Thrust and Beam Functions

$$B_i(t,x,\mu_B) = \sum_j \int_x^1 rac{\mathrm{d}\xi}{\xi} \, \mathcal{I}_{ij}\Big(t,rac{x}{\xi},\mu_B\Big) f_j(\xi,\mu_B) = \delta(t) f_i(x,\mu_B) + \cdots$$

ullet \mathcal{I}_{ij} computed to NLO for all ij

 $\mu>\mu_B$: PDF evolution replaced by beam-function evolution

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} B_i(t, x, \mu) = \int \! \mathrm{d}t' \gamma_B^i(t - t', \mu) \, B_i(t', x, \mu)$$

$$\gamma_B^i(t,\mu) = -2\Gamma_{\mathrm{cusp}}^i(\alpha_s) \, \frac{1}{\mu^2} \left[\frac{\theta(t)}{t/\mu^2} \right]_+ + \gamma_B^i(\alpha_s) \, \delta(t)$$

- Sums double logs of t
- No mixing in x or i (in contrast to PDF)
- $\quad \bullet \ \gamma_B^i(t) = \gamma_J^i(t)$
 - known to 3 loops [from Moch, Vermaseren, Vogt]

Correspondence with Fixed-Order Calculation

Correspondence with Fixed-Order Calculation

Correspondence with Fixed-Order Calculation

B(t) resums ISR t-channel singularities

Outline

- Jet Vetos and ISF
- Beam Thrust and Beam Functions
- NNLL Results for Drell-Yan and Higgs
- Outlook

Drell-Yan Cross Section With Central Jet Veto

Compare cross section (integrated over *Y*)

[using MSTW2008 NLO PDFs]

- inclusive without cut at NLO
- with jet veto $\tau_R^{\text{cut}} = \{0.1, 0.02\}$ at NNLL

Outlook

Drell-Yan Beam Thrust Cross Section

Cross section dominated by small τ_B where summing $(\ln \tau_B)/\tau_B$ or $\ln^2 \tau_B^{\rm cut}$ is important

- ullet Perturbative uncertainties are envelope of separate μ_H, μ_B, μ_S variation
- Soft function is perturbative in tail, becomes nonperturbative below peak
- Good convergence, significantly improved by summing constant π^2 terms in hard virtual corrections

Outlook

Drell-Yan Beam Thrust Cross Section

Cross section dominated by small au_B where summing $(\ln au_B)/ au_B$ or $\ln^2 au_B^{\rm cut}$ is important

- ullet Perturbative uncertainties are envelope of separate μ_H, μ_B, μ_S variation
- Soft function is perturbative in tail, becomes nonperturbative below peak
- Good convergence, significantly improved by summing constant π^2 terms in hard virtual corrections

Higgs production: $qq \rightarrow H + 0$ jets

$$\mathcal{T}_{B}^{
m cm} = \sum_{k} |\vec{p}_{kT}| e^{-|\eta_{k}|} = \sum_{k} (E_{k} - |p_{k}^{z}|)$$

Factorization theorem for $\mathcal{T}_B^{
m cm} \ll m_H$ $x_{a,b} = (m_H/E_{
m cm})e^{\pm Y}$

$$egin{aligned} rac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_B^\mathrm{cm}} &= rac{\sqrt{2}G_F\,m_H^2}{576\pi E_\mathrm{cm}^2}\,H_{gg}(m_t,m_H^2,\mu)\int\!\mathrm{d}Y \ & imes\int\!\mathrm{d}t_a B_g(t_a,x_a,\mu)\,\int\!\mathrm{d}t_b B_g(t_b,x_b,\mu)\,S_B^{gg}igg(\mathcal{T}_B^\mathrm{cm}-rac{e^{-Y}t_a+e^Yt_b}{m_H},\muigg) \end{aligned}$$

$$imes \left[1 + \mathcal{O}(\Lambda_{ ext{QCD}}/m_H, \mathcal{T}_B/m_H)
ight]$$

- ullet Gluon hard function contains gg o H vertex plus hard virtual corrections
- Now have gluon beam and soft functions for incoming gluons

gg o H production cross section with central jet veto $\mathcal{T}_{R}^{ m cm} \leq \mathcal{T}_{R}^{ m cm, cut}$

• $\mathcal{T}_B^{
m cm, cut} \simeq 10 \, {
m GeV}$ gives similar suppression of t ar t as veto on jets with $p_T^{
m jet} \gtrsim 25 \, {
m GeV}$, $|\eta| \lesssim 2.5$ (using Pythia+PGS)

Perturbative corrections and uncertainties significantly larger than in Drell-Yan

Mostly from fixed-order, NLL' includes NLO matching in NLL result

Beam Thrust Cross Section for Higgs Production

E.....

Jet veto has stronger impact for gluons than quarks: $C_A/C_F=2.25$

- \bullet π^2 summation enhances, log summation suppresses cross section
- Large ~ 25% scale uncertainties even at NNLL
 - Will be improved by including NNLO matching (N³LL)
 - lacktriangleq NNLO $H_{gg}(m_t,m_H^2,\mu_H)$ known from three-loop ggH form factor

[Harlander et al.; Pak, Rogal, Steinhauser]

▶ NNLO $B_q(t, x, \mu_B)$ and $S_B^{gg}(k, \mu_S)$ are feasible

Beam Thrust Cross Section for Higgs Production

Jet veto has stronger impact for gluons than quarks: $C_A/C_F=2.25$

- π^2 summation enhances, log summation suppresses cross section
- Large ~ 25% scale uncertainties even at NNLL
 - Will be improved by including NNLO matching (N³LL)
 - lacktriangleq NNLO $H_{gg}(m_t,m_H^2,\mu_H)$ known from three-loop ggH form factor

[Harlander et al.; Pak, Rogal, Steinhauser]

▶ NNLO $B_q(t, x, \mu_B)$ and $S_B^{gg}(k, \mu_S)$ are feasible

Match NNLL (without π^2) to full NLO($\mu=m_H$) at large $\mathcal{T}_B^{\mathrm{cm,cut}}$

- Nonsingular corrections from full NLO are small
- Need to choose $\mu_B(\mathcal{T}_B^{\mathrm{cm,cut}})$ and $\mu_S(\mathcal{T}_B^{\mathrm{cm,cut}})$ with $\mu_S=\mu_B=\mu_H$ for $\mathcal{T}_B^{\mathrm{cm,cut}}\gtrsim m_H/2$ to switch off resummation

Match NNLL (without π^2) to full NLO($\mu=m_H$) at large $\mathcal{T}_B^{\mathrm{cm,cut}}$

- Nonsingular corrections from full NLO are small
- Need to choose $\mu_B(\mathcal{T}_B^{\mathrm{cm,cut}})$ and $\mu_S(\mathcal{T}_B^{\mathrm{cm,cut}})$ with $\mu_S=\mu_B=\mu_H$ for $\mathcal{T}_B^{\mathrm{cm,cut}}\gtrsim m_H/2$ to switch off resummation

Comparison to Fixed NNLO

[Fixed-order results from FEHiP (thanks to Frank Petriello)]

Compare full NNLL+NLO to NLO($\mu=m_H/2$) and NNLO($\mu=m_H/2$)

- NNLO moves NLO into right direction (as it should)
- Total cross section from NNLL+NLO (with π^2) very close to fixed NNLO
- N³LL+NNLO required to properly compare to NNLO (will also reduce scale uncertainy)

Comparison to Fixed NNLO

[Fixed-order results from FEHiP (thanks to Frank Petriello)]

Compare full NNLL+NLO to NLO $(\mu=m_H/2)$ and NNLO $(\mu=m_H/2)$

- NNLO moves NLO into right direction (as it should)
- Total cross section from NNLL+NLO (with π^2) very close to fixed NNLO
- N³LL+NNLO required to properly compare to NNLO (will also reduce scale uncertainy)

Outline

- Jet Vetos and ISF
- Beam Thrust and Beam Functions
- NNLL Results for Drell-Yan and Higgs
- Outlook

N-Jettiness for pp o XL + N jets

$$au_N = rac{2}{Q^2} \sum_k \min \Bigl\{ q_a \!\cdot\! p_k, \, q_b \!\cdot\! p_k, \, q_1 \!\cdot\! p_k, \, \ldots, \, q_N \!\cdot\! p_k \Bigr\}$$

Particles get associated with closest jet/beam

ullet q_i are massless reference momenta

$$q_a^\mu = x_a E_{
m cm} \, {1\over 2} (1, ec z) \,, \qquad q_J^\mu = E_J (1, ec n_J)$$

- Large contributions only from energetic particles not collinear to any beam or jet
 - ▶ $\tau_N \sim 1$: Additional hard jets
 - $au_N \ll 1$: N-jet region

- Different jet algorithms only differ in treatment of soft particles
 - (must) give same q_m up to p.c. $\Rightarrow au_N^{\rm alg.1} = au_N^{\rm alg.2} + \mathcal{O}(au_N^2)$
- \Rightarrow Implements jet veto via inclusive event shape, can sum logs $lpha_s^n \ln^m au_{N_s}^{\mathrm{cut}}$

Factorization for N-Jet Cross Section ($au_N \ll 1$)

$$\begin{split} \frac{\mathrm{d}\sigma^{F_N}}{\mathrm{d}\tau_N} &= \int \! \mathrm{d}x_a \mathrm{d}x_b \int \! \mathrm{d}^4q \, \mathrm{d}\Phi_L(q) \int \! \mathrm{d}\Phi_N(\{q_J\})(2\pi)^4 \delta^4 \Big(q_a \!+\! q_b \!-\! \sum_J q_J \!-\! q\Big) \\ &\times F_N(\{q_m\}, L) \sum_{ij,\kappa} \mathrm{tr} \, \widehat{H}_{ij\to\kappa}(\{q_m\}, L, \mu) \\ &\times \int \! \mathrm{d}t_a \, B_i(t_a, x_a, \mu) \int \! \mathrm{d}t_b \, B_j(t_b, x_b, \mu) \prod_J \int \! \mathrm{d}s_J \, J_{\kappa_J}(s_J, \mu) \\ &\times \widehat{S}_N^{ij\to\kappa} \Big(\tau_N - \frac{t_a + t_b + \sum_J s_J}{Q^2}, \{q_m\}, \mu\Big) \end{split}$$

- $ullet \widehat{H}_{ij o\kappa}(\{q_m\},L)$ contains hard scattering $i(q_a)j(q_b) o L(q)\kappa_1(q_1)\cdots\kappa_N(q_N)$
- Measurement function $F_N(\{q_m\}, L)$ encodes signal requirements on L and N jets
- B_i, B_j describe ISR, J_{κ_J} describe FSR
- \bullet $\hat{S}_N^{ij \to \kappa}$ describes soft radiation

Measurements need to veto unwanted iets

Jet vetos have strong impact and cause large logs

Beam Thrust and Beam Functions

⇒ Should be summed beyond parton shower

Soft Jet a p Soft

Beam thrust: Inclusive event shape to veto jets

- Hadronic observable with full analytic control
- Factorization allows systematic resummation of logarithms
- Can be generalized to processes with N signal jets: N-jettiness
- ⇒ Beam functions required to sum double logs from ISR (ISR analog of jet functions)

Results for two examples with no central jets at NNLL

- Drell-Yan: Important benchmark process to study ISR and jet veto
- Higgs production: Jet veto is essential to beat down $t\bar{t}$ background

Outline

Backup Slides

Compare to Transverse Energy and Momentum

$$\tau_B = \sum_{k} \frac{|\vec{p}_{kT}|}{Q} e^{-|\eta_k - Y|} = \frac{1}{Q} \left[e^Y B_a^+(Y) + e^{-Y} B_b^+(Y) \right]$$

$$E_T = \sum_{k} |\vec{p}_{k\,T}| \;, \qquad \vec{p}_T = \sum_{k} \vec{p}_{k\,T} \\ | \tau_B \; E_T \; \vec{p}_T | \\ | \text{Linear in momenta} \\ | \text{Constrains central radiation} | \text{Constrains central radiation} | \text{Constrains central radiation} | \text{Constrains to very forward} | \text{Constrains central radiation} | \text{Constrains central radiation}$$

- B^+ is natural scalar quantity complementary to vector \vec{p}_T
- Limited rapidity reach of detectors is no problem, worst-case scenario:

LHC:
$$\eta_{\rm det} = 5 \Rightarrow 14 \, {\rm TeV} e^{-10} = 0.6 \, {\rm GeV}$$

Tevatron:
$$\eta_{
m det} = 4 \quad \Rightarrow \quad 2\,{
m TeV}e^{-8} = 0.7\,{
m GeV}$$

Standard Factorization for Inclusive Drell-Yan

Factorization theorem for inclusive $pp o X \ell^+ \ell^-$ [Collins, Soper, Sterman; Bodwin; '80s]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y} = \frac{8\pi\alpha_\mathrm{em}^2}{9E_\mathrm{cm}^2Q} \sum_{i,j=\{q,\bar{q},g\}} \int \frac{\mathrm{d}\xi_a}{\xi_a} \frac{\mathrm{d}\xi_b}{\xi_b} \hat{\sigma}_{ij} \Big(\frac{x_a}{\xi_a},\frac{x_b}{\xi_b},Q^2,\mu\Big) f_i(\xi_a,\mu) f_j(\xi_b,\mu)$$

$$imes \left[1 + \mathcal{O}\!\left(rac{\Lambda_{ ext{QCD}}}{Q}
ight)
ight]$$

- ullet Only physical scales are $\Lambda_{
 m QCD}$ and hard scale $\mu_H \simeq Q$
 - ▶ PDF evolution sums single logarithms $\alpha_s^n \ln^n(\Lambda_{\rm QCD}/Q)$
- ⇒ Valid for inclusive Drell-Yan, insufficient to sum double logs from jet veto

One-Loop Matching Calculation for Beam Function

Compute $\mathcal{I}_{ij}(t,z)$ perturbatively by taking partonic external states

$$\begin{split} \left\langle \mathcal{O}_{i}(t,\omega,\mu) \right\rangle &= \sum_{j} \int \frac{\mathrm{d}\omega'}{\omega'} \, \mathcal{I}_{ij} \Big(t, \frac{\omega}{\omega'}, \mu \Big) \left\langle \mathcal{Q}_{j}(\omega',\mu) \right\rangle \\ \mathcal{I}_{qq}^{(1)} &= \begin{pmatrix} 0 & y^{-}/\omega, -b^{+} & 0 & y^{-}/\omega, -b^{+}/\omega, -$$

NLO Result for Quark Beam Function

$$B_i(t, x, \mu) = \sum_j \int_x^1 \frac{\mathrm{d}\xi}{\xi} \, \mathcal{I}_{ij}\Big(t, \frac{x}{\xi}, \mu\Big) f_j(\xi, \mu)$$

$$\begin{split} \mathcal{I}_{qq}(t,z,\mu) &= \delta(t)\,\delta(1-z) + \frac{\alpha_s(\mu)C_F}{2\pi}\,\theta(z) \\ &\quad \times \left\{ \frac{2}{\mu^2}\mathcal{L}_1\!\left(\frac{t}{\mu^2}\right)\!\delta(1-z) + \frac{1}{\mu^2}\mathcal{L}_0\!\left(\frac{t}{\mu^2}\right)\!\left[P_{qq}(z) - \frac{3}{2}\,\delta(1-z)\right] \right. \\ &\quad \left. + \delta(t)\!\left[\mathcal{L}_1(1-z)(1+z^2) - \frac{\pi^2}{6}\,\delta(1-z) + \theta(1-z)\!\left(1-z - \frac{1+z^2}{1-z}\ln z\right)\right]\right\} \end{split}$$

$$\mathcal{I}_{qg}(t,z,\mu) = rac{lpha_s(\mu)}{4\pi} heta(z) igg\{ rac{1}{\mu^2} \mathcal{L}_0\Big(rac{t}{\mu^2}\Big) P_{qg}(z) + \delta(t) igg[P_{qg}(z) \Big(\lnrac{1-z}{z} - 1 \Big) + heta(1-z) igg] igg\}$$

- ullet $P_{qq}(z), P_{qg}(z)$ AP splitting functions, $\mathcal{L}_n(y) = [heta(y)(\ln y)^n/y]_+$
- Logs are minimized for $\mu^2 \simeq t$
- Nontrivial check: μ dependence of $\mathcal{I}_{ij}(t,z,\mu)$ indeed converts PDF running into beam-function running

Drell-Yan Theory Uncertainties

- Difference between fixed-order and resummed result is generically large and not captured by fixed-order scale uncertainties
- PDF+ α_s uncertainties are MSTW2008 90% CL
- Gluon contribution more important at LHC than Tevatron (pp vs. pp̄)
- Threshold limit $x \to 1$ for beam functions is poor approximation

Higgs Production Theory Uncertainties

- Difference between fixed-order and resummed result is larger than for Drell-Yan
- Also larger scale uncertainties, 20% to 30% at NNLL
- PDF+ α_s uncertainties are MSTW2008 90% CL

